SEMANTIC INDEXING OF TERRASAR-X AND IN SITU DATA FOR URBAN ANALYTICS

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semantic Indexing of Terrasar-x and in Situ Data for Urban Analytics

This paper presents the semantic indexing of TerraSAR-X images and in situ data. Image processing together with machine learning methods, relevance feedback techniques, and human expertise are used to annotate the image content into a land use land cover catalogue. All the generated information is stored into a geo-database supporting the link between different types of information and the comp...

متن کامل

Object-oriented Detection of Urban Areas from Terrasar-x Data

Urban environments represent one of the most dynamic regions on earth. Even in developed countries the yearly conversion of natural or agricultural space into residential, industrial or transport areas frequently exceeds 100 ha. Due to these rapid changes in landuse short-term data collection is demanded. Thus, remote sensing satellites and particularly the new German radar system TerraSAR-X wi...

متن کامل

Geocoding of Terrasar-x Data

TerraSAR-X is a new German radar satellite that shall be launched in April 2006. The expected lifetime is 5 years. It carries a high frequency X-band SAR sensor that can be operated in different modes and polarisation. The Spotlight-, Stripmapand ScanSARmodes provide high resolution SAR images for detailed analysis as well as wide swath data whenever a larger coverage is required. Imaging will ...

متن کامل

Analytics-Driven Lossless Data Compression for Rapid In-situ Indexing, Storing, and Querying

The analysis of scientific simulations is highly data-intensive and is becoming an increasingly important challenge. Peta-scale data sets require the use of light-weight query-driven analysis methods, as opposed to heavy-weight schemes that optimize for speed at the expense of size. This paper is an attempt in the direction of query processing over losslessly compressed scientific data. We prop...

متن کامل

ALACRITY: Analytics-Driven Lossless Data Compression for Rapid In-Situ Indexing, Storing, and Querying

High-performance computing architectures face nontrivial data processing challenges, as computational and I/O components further diverge in performance trajectories. For scientific data analysis in particular, methods based on generating heavyweight access acceleration structures, e.g. indexes, are becoming less feasible for ever-increasing dataset sizes. We present ALACRITY, demonstrating the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences

سال: 2015

ISSN: 2194-9034

DOI: 10.5194/isprsarchives-xl-1-w5-185-2015